บริษัทของคุณอาจใช้กลยุทธ์ AI ผิดทิศทาง
วิเคราะห์สาเหตุที่กลยุทธ์ AI ขององค์กรล้มเหลว พร้อมแนวทางแก้ไขที่เน้นการระบุปัญหาที่แท้จริง การจัดการข้อมูลอย่างมีคุณภาพ และการวางแผนนำไปใช้อย่างเป็นระบบ เพื่อสร้างโซลูชัน AI ที่ใช้งานได้จริง

Key takeaway
- องค์กรมักเริ่มต้นโครงการ AI โดยไม่ได้ระบุปัญหาที่ชัดเจน ทำให้เกิดการสูญเสียทรัพยากรและไม่ได้ผลลัพธ์ตามที่คาดหวัง ควรเริ่มจากการระบุปัญหาทางธุรกิจที่เฉพาะเจาะจงและวัดผลได้ก่อน
- ความเข้าใจผิดเกี่ยวกับข้อมูลเป็นอุปสรรคสำคัญ องค์กรมักคิดว่าข้อมูลที่มีอยู่พร้อมใช้งานกับ AI แล้ว แต่ความจริงคือ Machine Learning ต้องการข้อมูลคุณภาพสูงที่มีรูปแบบที่มีความหมาย
- การนำ AI ไปใช้ต้องคำนึงถึงการผสานเข้ากับกระบวนการทำงานจริง รวมถึงการฝึกอบรมและการยอมรับจากพนักงาน ไม่เช่นนั้นแม้จะเป็นโซลูชันที่ดีก็อาจล้มเหลวได้
บริษัทต่างๆ กำลังปฏิบัติต่อ Artificial Intelligence เหมือนกับแพทย์ในยุควิคตอเรียนที่ใช้ปลิงรักษาคนไข้ - มองว่าเป็นยาสารพัดประโยชน์ที่นำมาใช้โดยไม่พิจารณาปัญหาที่แท้จริง ในห้องประชุมคณะกรรมการทั่วประเทศ มักมีเสียงเรียกร้องว่า "เราต้องการกลยุทธ์ AI" โดยไม่มีการตั้งคำถามก่อนว่า "เรากำลังพยายามแก้ปัญหาอะไรเฉพาะเจาะจง?" ผลลัพธ์ที่ได้จึงไม่น่าประทับใจอย่างที่คาดหวังไว้
ผู้บริหารเรียกร้องโซลูชัน AI สำหรับปัญหาที่แทบไม่มีอยู่จริง ขณะที่มองข้ามปัญหาที่ AI สามารถแก้ไขได้อย่างมีประสิทธิภาพ นี่คือความสูญเปล่าที่ไม่ปรากฏในรายงานการเงินประจำไตรมาส บริษัททั้งหลายทุ่มเงินหลายล้านเข้าสู่โครงการ AI ที่สร้างการสาธิตน่าตื่นตาแต่ให้ผลลัพธ์ที่น่าผิดหวัง
กับดักของการเริ่มต้นด้วยเทคโนโลยี
การเดินทางด้าน AI ของบริษัทโดยทั่วไปมักเป็นไปตามเส้นทางที่คาดเดาได้อย่างน่าเศร้า เริ่มจากผู้บริหารเข้าร่วมการประชุมที่คู่แข่งโอ้อวดถึงโครงการ AI ของพวกเขา เกิดความตื่นตระหนก คำสั่งถูกส่งลงมา: "นำ AI ไปใช้ในทุกแผนก" ทีมงานรีบเร่งค้นหาเคสการใช้งานเพื่อรองรับเทคโนโลยีที่ถูกเลือกไว้แล้ว ที่ปรึกษาเข้ามาพร้อมกับสไลด์นำเสนอ โครงการนำร่องถูกเปิดตัว การสาธิตถูกจัดทำขึ้น ข่าวประชาสัมพันธ์ถูกร่าง และหนึ่งปีต่อมา เมื่อมีคนถามถึง ROI ทุกคนก็จ้องมองรองเท้าตัวเองอย่างเงียบงัน
ภาพลวงตาเกี่ยวกับข้อมูล
มีความขัดแย้งทางความคิดที่น่าสนใจในวิธีที่องค์กรมองข้อมูลของตน เมื่อถามผู้นำด้านเทคนิคเกี่ยวกับคุณภาพข้อมูลของบริษัท พวกเขามักยิ้มแห้งๆ อย่างรู้ทัน แต่กระนั้น บริษัทก็ยังอนุมัติโครงการ AI ด้วยสมมติฐานว่ามีชุดข้อมูลที่สมบูรณ์แบบและครอบคลุมอยู่ในระบบ
Machine Learning ไม่ได้ต้องการแค่ข้อมูล แต่ต้องการรูปแบบที่มีความหมายในข้อมูลคุณภาพดี อัลกอริทึมการเรียนรู้ที่ฝึกฝนด้วยข้อมูลขยะไม่ได้กลายเป็นอัจฉริยะ แต่กลายเป็นเครื่องผลิตขยะที่มีความมั่นใจสูงอย่างมีประสิทธิภาพ
ช่องว่างในการนำไปใช้
โซลูชัน AI ที่ซับซ้อนที่สุดในโลกก็ไร้ค่าหากไม่ได้รับการผสานเข้ากับการทำงานจริง แต่บริษัทมักลงทุนหลายล้านในอัลกอริทึม ขณะที่จัดสรรงบประมาณเพียงน้อยนิดเพื่อให้แน่ใจว่าคนจะใช้งานจริง
พวกเขาสร้างโซลูชัน AI ที่ต้องการการมีส่วนร่วมอย่างสมบูรณ์จากพนักงานที่ไม่ได้รับการปรึกษาระหว่างการพัฒนา ไม่เข้าใจโมเดล และไม่ได้รับการฝึกอบรมให้ใช้เครื่องมือ
การกลับทิศทางกลยุทธ์
กลยุทธ์ AI ที่ออกแบบอย่างถูกต้องควรเป็นอย่างไร? เริ่มต้นด้วยการระบุปัญหาทางธุรกิจที่เฉพาะเจาะจงและวัดผลได้ ตรวจสอบปัญหาเหล่านี้ผ่านการวิเคราะห์อย่างเข้มงวด ประเมินว่าปัญหาเหล่านี้ต้องการ AI จริงๆ หรือไม่ พิจารณาการเปลี่ยนแปลงองค์กรที่จำเป็นต่อการนำโซลูชันไปใช้ จากนั้นจึงประเมินว่าข้อมูลและเทคโนโลยีใดที่อาจแก้ไขปัญหาที่ตรวจสอบแล้ว
กรอบการนำไปใช้ที่ดีกว่า
การนำ AI ไปใช้อย่างมีประสิทธิภาพต้องกลับวิธีการทั่วไป:
- ปัญหาก่อนโซลูชัน: ระบุและตรวจสอบความท้าทายทางธุรกิจเฉพาะที่มีผลกระทบที่วัดได้
- ตรวจสอบความเป็นจริงของข้อมูล: ประเมินคุณภาพข้อมูลที่มีอยู่และกระบวนการเก็บรวบรวมก่อนสันนิษฐานความเป็นไปได้ของ AI
- ทดสอบความเรียบง่าย: พิจารณาว่าวิธีการที่ง่ายกว่าและไม่ใช่ AI อาจแก้ปัญหาได้อย่างมีประสิทธิภาพมากกว่าหรือไม่
- ความพร้อมขององค์กร: ประเมินว่ากระบวนการทำงานและทีมพร้อมที่จะรวมโซลูชัน AI หรือไม่
- การนำไปใช้แบบค่อยเป็นค่อยไป: เริ่มต้นด้วยโครงการนำร่องขนาดเล็กที่มุ่งเน้นปัญหาที่กำหนดไว้อย่างชัดเจน
แทนที่จะถามว่า "เราจะใช้ AI อย่างไร?" ลองถามว่า "ปัญหาเฉพาะใดที่คุ้มค่าแก่การแก้ไข และ AI อาจเป็นวิธีการที่เหมาะสมสำหรับบางปัญหาหรือไม่?" การปรับเปลี่ยนมุมมองนี้อาจไม่สร้างความประทับใจในการบรรยายที่การประชุม แต่มักจะสร้างโซลูชันที่ใช้งานได้จริง ซึ่งน่าจะเป็นเป้าหมายที่สมเหตุสมผลสำหรับการลงทุนด้านเทคโนโลยีหลายล้านบาท
Why it matters
💡 บทความนี้นำเสนอมุมมองที่สำคัญเกี่ยวกับความผิดพลาดทั่วไปในการนำ AI มาใช้ในองค์กร พร้อมแนวทางแก้ไขที่มีประสิทธิภาพ เหมาะสำหรับผู้บริหารและทีมไอทีที่กำลังวางแผนหรือดำเนินโครงการ AI อยู่ ผู้อ่านจะได้เรียนรู้วิธีหลีกเลี่ยงกับดักที่พบบ่อย เข้าใจความสำคัญของการเริ่มต้นจากปัญหาธุรกิจที่แท้จริง และได้แนวทางการนำ AI ไปใช้อย่างมีประสิทธิภาพที่สามารถนำไปปรับใช้ได้จริง
ข้อมูลอ้างอิงจาก https://www.entrepreneur.com/science-technology/why-your-companys-ai-strategy-is-probably-backwards/490594